Philosophy 211
The basics of first order semantics
The Semantics of Predicate Logic
I. Interpretations
We started our class with the intuitive understanding of a valid argument being such that it is impossible for all of the premises to be true and for the conclusion to be false.  Our first attempt at filling out ‘impossible’ was to translate the sentences into Sentential Logic and look at all possible truth-value assignments to the atomic sentences.  Then since our connectives are truth-functional we can determine the value of whole sentences and look to see if there is any truth-value assignment that makes all of the premises true and the conclusion false.  If there is, we say the argument is invalid.  If not, we say it is valid.

Now we have improved the strength of our language in that we can represent relationships between sentences in PL that we couldn’t represent in SL.  This leads to the possibility that more arguments are really valid than SL can detect.  For example, from “Every person is a painter” and “there is at least one person” we should be able to conclude that “Some person is a painter.”  However, each of these sentences appears to be atomic in SL and so the argument would appear to be invalid.  Therefore we need something more than the SL proof rules and Truth Tables.  
The proof rules of PL give us a way of showing that some arguments are valid. Since the rules are ‘truth-preserving’, we can establish that a certain argument is valid by giving a proof of the conclusion from the premises.  However, again, as in SL, proofs do not provide a way of concluding that a given argument is not valid.  In SL, we use truth tables as a method for showing that an argument is invalid.  What we need is a predicate logic analog of truth-tables.


In one sense, we can find an acceptable analog and in another sense, no analog is possible.  On the positive side, there are unfailing methods for determining whether arguments of PL are valid or invalid.  On the negative side, there is a deep and important theorem about first order logic, Church’s Theorem, which says that there can be no unfailing mechanical method for determining which arguments of PL are valid.  In other words, Church’s Theorem implies that even though these methods never get the wrong answer, they are unlike truth-tables in that they are not mechanical; their use may require insight and ingenuity.
In semantics, the basic idea is that a sequent X ├ Y is not valid if we can show that there is a possible situation in which X is true and Y is false.  Now we need to know what it is that can make a sentence true or false.  We have to provide an interpretation of the non-logical symbols so that we can determine the truth-value of the various sentences.
Let’s start with atomic sentences.  We need to know when Pa, Qa, Pb, Rab, Saa, etc. are true.  The answer is that it depends on the meaning of Pa.  If P means ‘is a painter’ and ‘a’ refers to Adam then Pa is true precisely when Adam is a painter.  Rab might mean that Adam respects Bob.  a=b is true when ‘a’ and ‘b’ refer to the same thing.  This takes care of all kinds of atomic sentences.  So an interpretation has to at least tell us the meaning of the predicates and the names just so that we can determine the truth-values of the atomic sentences.  Now, for sentences whose main connective is a truth-functional connective, the idea behind the truth-tables is sufficient.  For example, if we make Pa true and we make Qa true then we have just made Pa & ~Qa false.  It is easy to see how this generalizes.  The only thing remaining is to determine the truth-value of sentences whose main operator is a quantifier - ( or (.  Since (xPx just means that everything is P, we need to know what things there are in the universe.  Similarly, we can determine the truth of (x~Qx by knowing which things there are in the universe and which things are Q.  Then we just look to see if there is anything in the universe that is not a Q.  Our book calls this set of things ‘U’ for Universe.  It is also commonly called a “UD” for Universe of Discourse (what we are talking about).  More common in mathematical contexts is simply “D” for Domain (this makes more sense when you think of an interpretation as a certain kind of function.)
In different contexts an interpretation may need more elements.  For example, since our book allows PL sentences to contain sentence letters like P, Q, and R you also need a TVA to the atomic sentence letters.  More advanced treatments of first order logic (such as in Philosophy 511) will also allow function symbols (like +, *, ^, etc.) so you need to interpret those.  I haven’t discussed functions so we will just ignore them.  All we need for our purposes are three basic components.  
A translation scheme gives us an informal way of showing that a given sentence can be true or false.  For example, let’s examine the sentence Ma & Wb.  Clearly it is possible for it to be true and possible for it to be false.  Here are two interpretations (given as translation schemes):

       I1


       
       I2

U: All People


U: All People

M(: ( is a man

M(: ( is married

W(: ( is a woman

W(: ( was born in Washington D.C.
a: Alex Rodriguez

a: the Pope
b: Barbara Bush

b: George W. Bush
Here Ma & Wb is true in I1 (since Alex Rodriguez is a man and Barbara Bush is a woman) and Ma & Wb is false in I2 since each part is false (since the Pope is not married and George W. Bush was not born in Washington D.C.).  Now we could continue to try coming up with translations schemes which gave the results that we want, but we need to be able to give interpretations that can make a very wide variety of sentences true.  For example, it needs to be the case that there is some way to make large numbers of sentences true at the same time and it will not always be easy to come up with a natural translation scheme to get the result we want.  Instead what we do is simply abstract away from the details of particular cases and simply force the interpretation to tell us directly which atomic sentences are true and false.  To do this, we use Set Theory notation as a way of filling out the interpretation.  Now let’s examine each part of the interpretation in closer detail.
1. Universe.  To interpret ( and ( we need to know what these quantifiers range over.  In formal semantics, interpret the universe as a non-empty set of objects.  So it has to contain at least one thing, but there is no upper limit on the number or type of things it contains.  Our book has ‘finite interpretation’ as a distinct category which is just any interpretation in which there are only finitely many things, but in general, there is no real distinction between finite and infinite universes.  Informally, we sometimes may say (x ranges over people, or numbers, or teachers and meetings, etc. but abstractly, you can just make a list of items.  

As an example we might write “U: (Alice, Bob, Charley(” but it would be even more efficient to simply write “ U: (a,b,c( “.  The curly brackets indicate that what is between them are the members of a set.  This universe consists of three elements – a, b, and c.  Now if we write (xRxx this means that every element in the universe (a, b, and c) have R to themselves.  
2. Names.  Each interpretation must tell us what the names stand for.  Each name must be assigned to some element of the universe.  So for example, if our universe was U: (Alice, Bob, Charley( we might have ‘a’ refer to Alice, ‘b’ to Bob, and ‘c’ to Charley.  Since we can name the objects abstractly when we list them as part of U, we can make this even simpler.  We can simply make the objects in U a, b, and c.  Then ‘a’ names a, ‘b’ names b, and ‘c’ names c.  Officially there is a worry here in that we want it to be possible for a=b to be true – so ‘a’ and ‘b’ must be able to name the same thing.  In fact, this is the only kind of sentence where this matters at all.  To interpret a set of sentences, we don’t even need to list what the names stand for unless the sentences contain multiple names and the identity symbol.  Otherwise we just assume that in ‘Pa’ the ‘a’ refers to the object ‘a’ in the universe, etc.  I will ignore most of the details of this for now.  The book has a very short discussion of this in chapter 4.
3. Predicates.  To know whether Pa is true, even if we know what ‘a’ stands for we still need to know whether a is a P.  For example, if P was “is a painter” and ‘a’ stood for Adam we would need to know whether Adam was a painter.  Officially, we could make any number of objects in the domain Ps.  After all, we are attempting to look at all possible situations.  To avoid messy details of coming up with English names that just perfectly fit the group we want, we assign to every predicate an extension.  An extension is just a subset of the universe to which the predicate applies.  For example, if we wanted “P” to be “is a painter” and our universe was (a, b, c( we might want a and b to be painters.  So we just list the extension of P as follows “P: (a, b(”  This means that a and b are painters but c isn’t.  Note that P could be empty P: (( which just means that nobody is a painter.  P could also be the full set U - P: (a, b, c( - this would mean that everybody was a painter.  The essential point though is that we don’t even need to know what P means.  As long as we know which things are P, it doesn’t matter which things are P.  
Two-place predicates are a bit trickier.  If Lab means “a loves b” this shows that the extension of L needs to contain pairs of objects in the domain.  These are ordered pairs meaning that (a,b( is different than (b,a(.  For example, if U = (a, b, c( and we want Laa, Lab, and Lcb to be true but all other L statements (Lac, Lba, Lbb, Lbc, Lca, Lcc) to be false we write: L: ((a,a(, (a,b(, (c,b((.  This means that these three ordered pairs are in the extension of L and no other ordered pairs are.

II. On the relationship between interpretations and diagrams.  In fact you have already seen some examples of interpretations in different forms.  Diagrams can be thought of as a pictorial form of an interpretation.  For example, lets examine you have the following diagrams:

Diagram 1
T1
T2
T3

Diagram 2
T1
T2





M1
M2




M1
M2
M3

These can be represented more abstractly by the following interpretations:


I1





I2

U: (a,b,c,d,e(




U: (a,b,c,d,e(
T: (a,b,c}




T: (a,b(
M: (d,e(




M: (c,d,e(
A: ((a,d(,(b,d(,(b,e(,(c,e((


A: ((a,c(,(a,d(,(b,d(,(b,e((
Each teacher in the diagram represents one object in the domain which is in the extension of T, each meeting represents an object which is in the extension of M and each pointed arrow represents a particular ordered pair being in the extension of A.  In fact you may have seen Venn Diagrams before.  Venn Diagrams (cleverly used) are sufficient to show the validity or invalidity of sequents involving only one-place predicates.  
It might seem as though diagrams are much easier to read and so easier to determine which sentences are true or false and so there is no need to use interpretations in the way the book does.  There is some truth to that, although formally writing interpretations in set theory notation has several advantages over diagrams.  For example, it gives a unified treatment to many place predicates.  To deal with three place predicates, we look at a set of triples, etc.  We could imagine trying to extend diagrams to deal with three place predicates – maybe an arrow which passes through the middle point.  But it is easy to see how to do 4, 5, 6, etc. place predicates in set theory notation.  It is not clear how to do this with diagrams.  In addition, we can deal arbitrary numbers of predicates.  For example, perhaps we want to know whether (x(Px & Qx & ~Rx & Dxx & Axx) is true.  To do this with diagrams, we would need the possibility of an object falling under at least three different types and we would need two different types of arrows to distinguish the D and the A relation.  At some point this is just going to be impossible to draw a useful picture.  However, for simple examples where you can imagine drawing a diagram, you may find it helpful to actually draw a diagram representing what is going on and read the value of the sentence off the diagram.  
III. Truth in an interpretation.
In SL, sentences are not true or false simpliciter they are true in this TVA, false in that TVA, true in every TVA, etc.  Similarly, the truth of sentences is now relativized to interpretations.  (xPx is going to be true in some interpretations and false in others.  Once we specify an interpretation, we can determine whether a particular sentence is true or false in that interpretation.  Here’s how:

As with SL, we first determine which atomic sentences are true:

For identity sentences, a=b is true precisely when ‘a’ and ‘b’ refer to the same thing.  

For one place predicates like Pa, Pa is true precisely when the object that ‘a’ refers to is in the extension of P.  This can be written as a ( P.  A two-place predicate sentence like Rab is true precisely when the ordered pair (a,b( is in the extension of R.  This is written as (a,b( ( R.  

For sentences whose main connective is ~, v, &, ( or ( we calculate the value of the sentence in the familiar way.

~X is true iff X is false.

X v Y is true iff X is true or Y is true

X & Y is true iff X is true and Y is true

X ( Y is true iff X is false or Y is true

X ( Y is true iff either X is true and Y is true or X is false and Y is false.

For sentences whose main connective is ( or ( we have to do something more complicated.  Our text uses the concept of an expansion of a quantified sentence which is sufficient for finite interpretations but doesn’t work for infinite interpretations.  There are several different ways of extending this to the infinite case which I won’t bother going into detail about.  Note that using expansions can get unwieldy in sentences with multiple quantifiers and in universes with a large number of elements (or both).  For example, the expansion of (x(y(z((Rxy & Ryz) ( Rxz) in a universe with 5 elements is a sentence with a total of 5*5*5*2 = 250 connectives.  
Often it is best to simply try to understand what the sentence means.  For example, when checking the truth of (xPx officially you need to make sure that Px would be true no matter which object x refers to.  But if you realize that this just means that everything is P, you can tell at a glance whether or not this is true by just checking to make sure that every element of U is also in P – in other words, making sure that P = U.  To make (xPx true you just need to make sure that P is not empty – that is, that something is in P.  (x(Px & Qx) means that there is something that is in both P and Q.  (x(Px ( Qx) means that everything that is in P is also in Q (maybe more).  In other words, P is a subset of Q.  

Here are some examples:


I1


I2


I3

U: (a, b, c(

U: {a,b}

U: {a,b}

P: (a}


P: {}


P: {a}

Q: {b,c}

Q: {a,b}

Q: {a}

R: {(a,a(, (b,c(}
R: {(a,b(,(b,a(}
R: {(b,b(}

1. Pa

This is true in I1 and I3 since a ( P in I1 and I3, but not in I2.

2. Rab

This is true in I2 but not I1 or I3 since (a,b( ( R in I2 but not I1 or I3.

3. (xPx
True in I1 (a makes it true) and true in I3 (a makes it true) but false in I2.

4. (xQx
True in I2

5. (x(Px & Qx)
True in I3

6. (x(Px ( Qx)
True in I2 (you can’t find anything in P that isn’t in Q) and in I3
7. (xRxa

False in each I.  In I1 Rba and Rca are false.  In I2 Raa is false.  In 



I3 Raa and Rba are false.

8.(x(yRxy
Here I want to know whether everything has R to something.  In I1, Rcy is false no matter what y is so (yRcy is false so it is false in I1 (c makes it false.).  It is true in I2 since both (yRay and (yRby are true.  It is false in I3 since (yRay is false.

9. (x(Px & (yRyx)  Here I want to know whether there is something that is P that everything has R to.  Rather than checking everything I will simply check each of the Ps to see if any of them make (yRyx true.  In I1, no x makes (yRyx true so it is false.  In I2, nothing works either (since nothing points to itself) and again it is false in I3.

10. (x(Px ( (y(Qy ( ~Rxy))  Here I want to know if for every P, it is related to none of the Qs.  This is true in each of the Is.  
IV. Basic notions of semantics: 

A set of sentences ( entails a sentence φ iff every interpretation that makes every member of ( true also makes φ true (alternatively, there is no interpretation that makes all the members of ( true and also makes φ false.)  This is written (╞ φ.  This also means that φ is a consequence of (.

An argument in valid when its premises entail its conclusion.  It is invalid otherwise (when there is an interpretation that makes all of its premises true and its conclusion false.)  
A set of sentences is consistent iff there is an interpretation that makes each of its members true.  We often call such an interpretation a model of the set.  A set is inconsistent if there is no such interpretation – i.e. it has no model.
A sentence is valid iff it is true in every interpretation.  This is written as ╞ φ.  We previously used this symbol for a tautology in SL.  We can extend the notion of a tautology to PL (true in virtue of its truth-functional structure) to include things like (xPx v ~(xPx as a tautology, but in PL there are sentences that are valid due to their quantificational structure such as (x x=x which are not tautologies.

A sentence is a contradiction when it is false in every interpretation.

A sentence is contingent when it is true in some interpretations and false in others.

